Apprenticeship and Industry Training

Machinist

Curriculum Guide

015 (2022)

ALBERTA ADVANCED EDUCATION

Machinist: apprenticeship education program curriculum guide

ISBN 978-1-4601-5207-2

ALL RIGHTS RESERVED:

© 2022, Her Majesty the Queen in right of the Province of Alberta, as represented by the Minister of Advanced Education, 19th floor, Commerce Place, Edmonton, Alberta, Canada, T5J 4L5. All rights reserved. No part of this material may be reproduced in any form or by any means, without the prior written consent of the Minister of Advanced Education, Province of Alberta, Canada.

Classification: Public

Machinist Table of Contents

Apprenticeship	2 2
Apprentice Safety	3
Technical Training	3
Procedures for Recommending Revisions to the Curriculum Guide	3
Apprenticeship Route Toward Academic Credential	4
Machinist Training Profile	5
CURRICULUM GUIDE	
First Period Technical Training	10
First Period Technical TrainingSecond Period Technical Training	18
Third Period Technical Training	23
Fourth Period Technical Training	28

Apprenticeship

Apprenticeship is post-secondary education with a difference. Apprenticeship begins with finding a sponsor. Sponsors guide apprentices, and support on-the-job learning through provision of mentorship. Approximately 80 per cent of an apprentice's time is spent on the job under the supervision of a certified journeyperson or qualified tradesperson. The other 20 per cent involves technical training provided at, or through, a post-secondary institution (PSI) – usually a college or technical institute.

To receive their post-secondary credential, apprentices must learn theory and skills, and they must pass examinations. Criteria for the program—including the content and delivery of technical training—are developed and updated by the Registrar.

The graduate of the Machinist apprenticeship education program is an individual who will be able to:

- understand the principles of sound and safe trade practice
- interpret drawings, plans, and be able to layout and develop projects according to specifications
- use the tools of the trade in a safe and proper manner
- relate to the work of other tradespeople employed in the industry either on construction or in maintenance
- perform assigned tasks in accordance with quality and production standards required in industry

Apprenticeship and Industry Training System

Alberta's apprenticeship education programs are supported by industry stakeholders that ensures a highly skilled, internationally competitive workforce in the province. The Registrar establishes the educational standards and provides direction to the system supported by industry and the PSI's. The Ministry of Advanced Education provides the legislative framework and administrative support for the apprenticeship and industry training system.

Special thanks are offered to the following industry members who contributed to the development of the standard:

Mr. B. Wermann	Edmonton
Mr. G. Callies	Gwynne
Mr. M. Desjardins	Calgary
Mr. D. Short	Edmonton
Mr. J. Irving	South
Mr. M. Gamache	Edmonton
Mr. N. Forbes	Edmonton
Mr. R. Roes	Peace River
Mr. K. McGrath	Red Deer

Alberta Government

Alberta Advanced Education works with industry, sponsor and employee organizations and technical training providers to:

- facilitate industry's development and maintenance of training and certification standards
- provide registration and counselling services to apprentices and sponsors
- coordinate technical training in collaboration with training providers
- certify apprentices and others who meet industry standards

Apprentice Safety

Safe working procedures and conditions, incident/injury prevention, and the preservation of health are of primary importance in apprenticeship education programs in Alberta. These responsibilities are shared and require the joint efforts of government, sponsors, employees, apprentices and the public. Therefore, it is imperative that all parties are aware of circumstances that may lead to injury or harm.

Safe learning experiences and healthy environments can be created by controlling the variables and behaviours that may contribute to or cause an incident or injury. By practicing a safe and healthy attitude, everyone can enjoy the benefit of an incident and injury free environment.

Occupational Health and Safety

Persons engaged in, or supporting an individual in an experiential learning environment are often exposed to more worksite hazards than in other forms of traditional post-secondary education and therefore should be familiar with and apply the Occupational Health and Safety Act, Regulations and Code when dealing with personal safety and the special safety rules that apply to all daily tasks.

Occupational Health and Safety-OHS (a division of Alberta Labour and Immigration) conducts periodic inspections of workplaces to ensure that safety regulations for industry are being observed.

Additional information is available at www.alberta.ca/occupational-health-safety.aspx

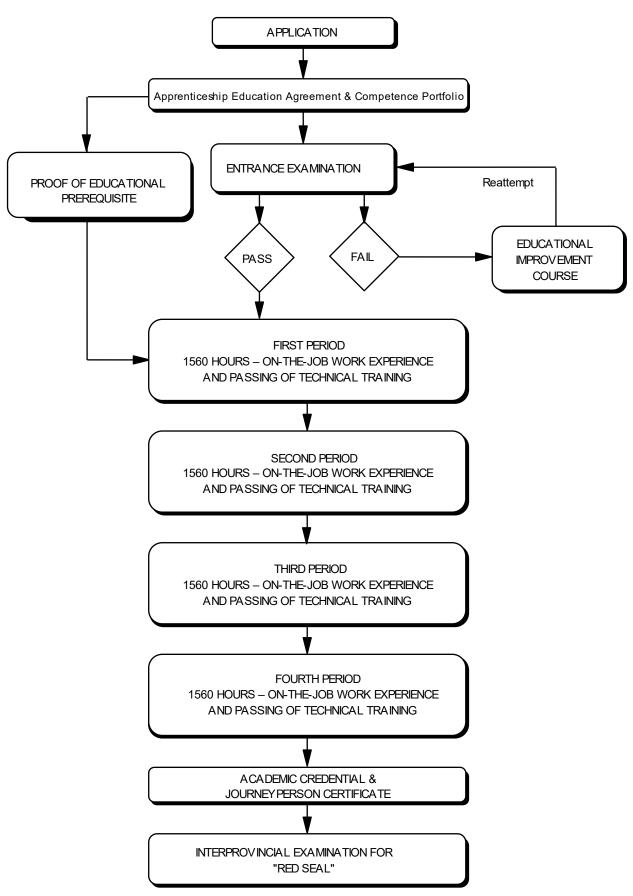
Technical Training

Apprenticeship technical training is delivered by the PSI's throughout Alberta. The PSI's are committed to delivering the technical training component of Alberta apprenticeship education programs in a safe, efficient and effective manner. All PSI's place a strong emphasis on safety that complements safe workplace practices towards the development of a culture of safety for all professions.

The PSI's work with industry and Alberta Advanced Education to enhance access and responsiveness to industry needs through the delivery of the technical training component of apprenticeship programs across the province. They develop curriculum from the curriculum guides established by the Registrar in consultation with the PSI's and industry and provide the technical training to apprentices.

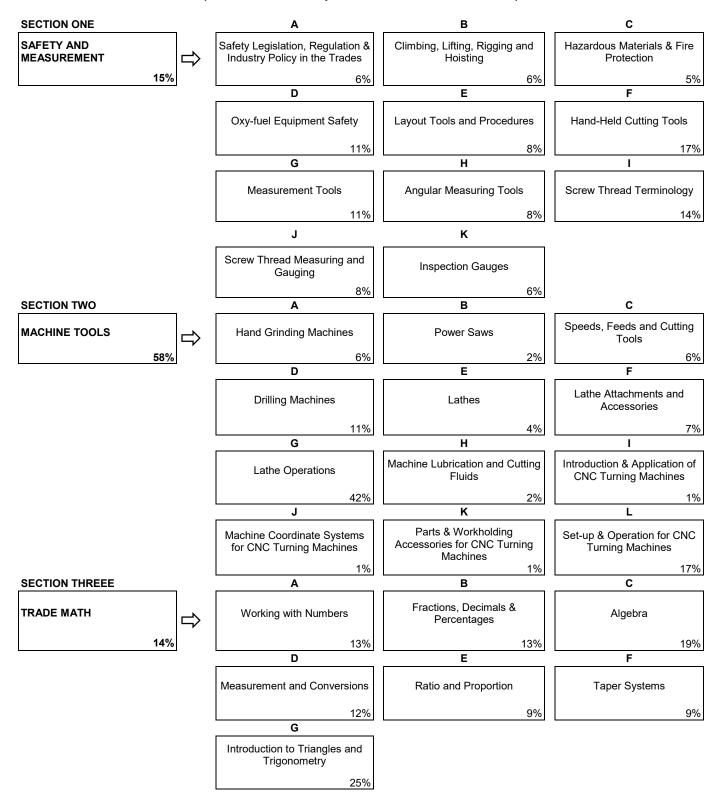
The following PSI's deliver Machinist trade apprenticeship technical training:

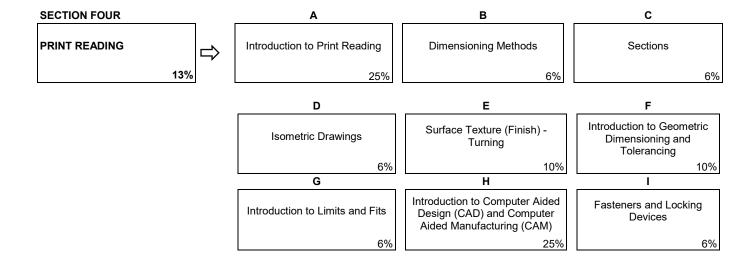
Northern Alberta Institute of Technology Southern Alberta Institute of Technology

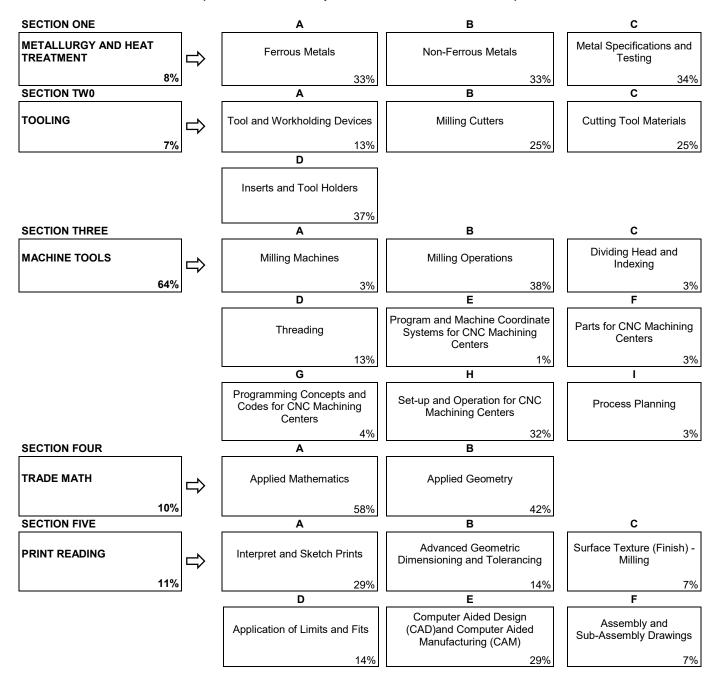

Procedures for Recommending Revisions to the Curriculum Guide

Any concerned individual or group in the province of Alberta may make recommendations for change by writing to:

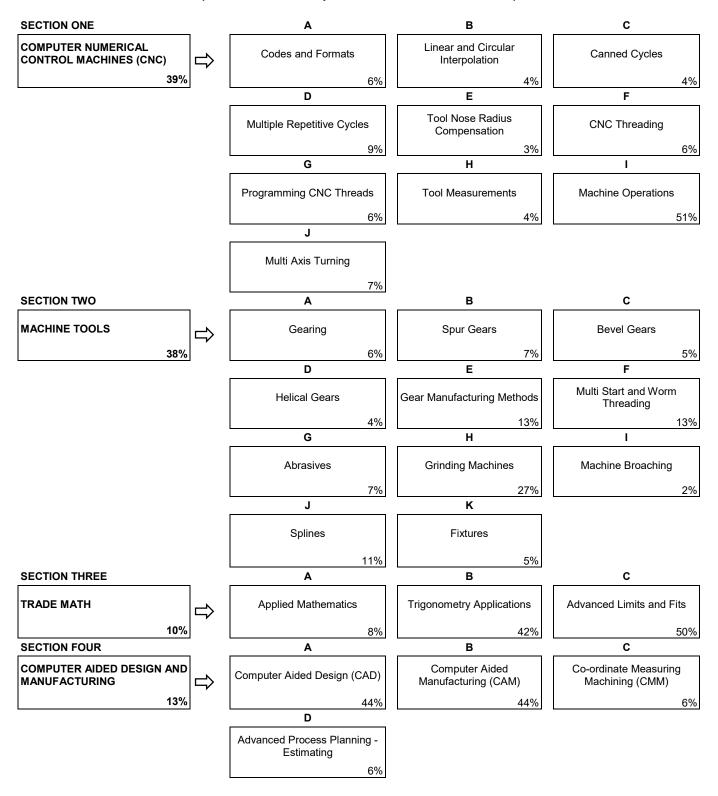
Registrar of Apprenticeship Education Programs c/o Apprenticeship Delivery and Industry Support Services Apprenticeship Delivery and Industry Support Advanced Education 19th floor, Commerce Place 10155 102 Street NW Edmonton AB T5J 4L5

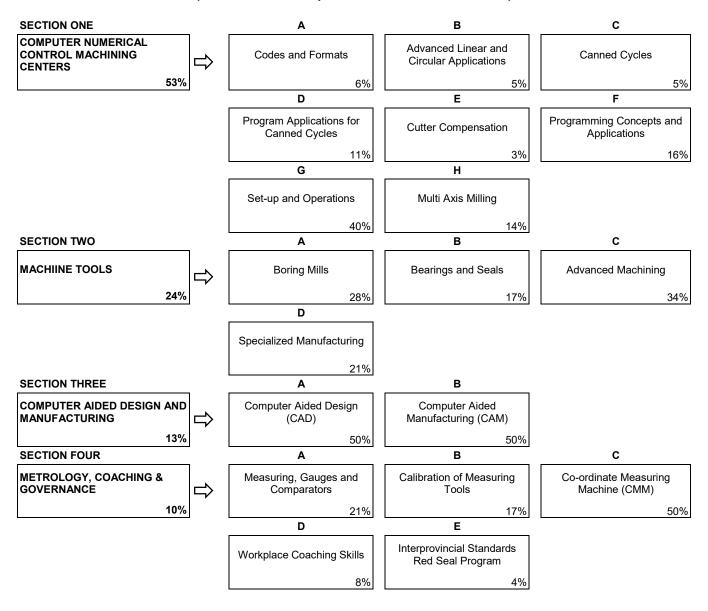

It is requested that recommendations for change refer to specific areas and state references used.


Apprenticeship Route toward Academic Credential


Machinist Training Profile FIRST PERIOD

(8 Weeks 30 Hours per Week - Total of 240 Hours)




SECOND PERIOD (8 Weeks 30 Hours per Week – Total of 240 Hours)

THIRD PERIOD (8 Weeks 30 Hours per Week – Total of 240 Hours)

FOURTH PERIOD (8 Weeks 30 Hours per Week – Total of 240 Hours)

FIRST PERIOD TECHNICAL TRAINING MACHINIST TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS PROGRAM THE APPRENTICE WILL BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SE	CTION ONE:	SAFETY AND MEASUREMENT	15%
A.	Safety Legi	slation, Regulation & Industry Policy in the Trades	6%
	Outcome	e: Apply legislation, regulations and practices ensuring safe work in this trade.	
	1.	Demonstrate the application of the Occupational Health and Safety Act, Regulation and Co	de.
	2.	Describe the sponsor's and employee's role with Occupational Health and Safety (OH&S) regulations, Worksite Hazardous Materials Information Systems (WHMIS), fire regulations Workers Compensation Board regulations and related advisory bodies and agencies.	,
	3.	Describe industry practices for hazard assessment and control procedures.	
	4.	Describe the responsibilities of worker and sponsors to apply emergency procedures.	
	5.	Describe tradesperson attitudes with respect to housekeeping, personal protective equipment and emergency procedures.	ent
	6.	Describe the roles and responsibilities of sponsors and employees with the selection and u of personal protective equipment (PPE).	se
	7.	Maintain required PPE for tasks.	
	8.	Use required PPE for tasks.	
В.	Climbing, L	ifting, Rigging and Hoisting	6%
	Outcome	e: Use industry standard practices for climbing, lifting, rigging and hoisting in thi trade.	is
	1.	Describe manual lifting procedures.	
	2.	Describe rigging hardware and associated safety factors.	
	3.	Select equipment for rigging loads.	
	4.	Describe hoisting and load moving procedures.	
	5.	Maintain personal protective equipment (PPE) for climbing, lifting and load moving equipment	ent.
	6.	Use PPE for climbing, lifting and load moving equipment.	
C.	Hazardous	Materials & Fire Protection	5%
	Outcome	e: Apply industry standard practices for hazardous materials and fire protection this trade.	in
	1.	Describe roles, responsibilities, features and practices related to the Workplace Hazardous Materials Information System (WHMIS) program.	
	2.	Describe three key elements of WHMIS.	
	3.	Describe handling, storing and transporting procedures for hazardous material.	
	4.	Describe venting procedures when working with hazardous materials.	
	5.	Describe hazards, classes, procedures and equipment related to fire protection.	

D.). Oxy-Fuel Equipment Safety 1		
	Outcom	ne: Demonstrate the use oxy-fuel equipment for heating and cutting operations.	
	1.	Describe the safety precautions and devices for oxy-fuel equipment.	
	2.	Describe oxygen and fuel gas cylinders, regulators and the nature of gases.	
	3.	Describe set-up, pressure and flame adjustment, and shutdown, for oxy-fuel equipment.	
	4.	Set-up oxy-fuel equipment.	
	5.	Demonstrate heat treatment and cutting operations.	
E.	Layout To	ools and Procedures	8%
	Outcom	e: Demonstrate semi-precision and precision layout procedures.	
	1.	Describe the tools for layout procedures.	
	2.	Describe the procedures for basic and precision layout.	
	3.	Demonstrate layout procedures using layout tools.	
F.	Hand-Held	d Cutting Tools	17%
	Outcom	ne: Demonstrate the use of hand-held cutting tools common to the trade.	
	1.	Describe hacksaws and blades.	
	2.	Describe parts, types, classification, shape and use of files.	
	3.	Describe de-burring processes.	
	4.	Describe taps and dies, stud and bolt removal tools, and the lubricant for these applications.	
	5.	Describe hand reamers and hand broaching tools and their applications.	
	6.	Describe the use of threaded inserts for thread repair operations.	
	7.	Demonstrate the use of hand held cutting tools.	
G.	Measuring	g Tools	11%
	Outcom	ne: Measure workpieces using metric and imperial measuring tools.	
	1.	Describe basic measuring tools used in the machinist trade.	
	2.	Describe precision measuring tools used in the machinist trade.	
	3.	Describe the effects of temperature changes, with respect to measuring components.	
	4.	Demonstrate the use and care of measuring tools.	
Н.	Angular M	leasuring Tools	8%
	Outcom	e: Demonstrate measuring workpieces using angular measuring tools.	
	1.	Describe the use of dial indicators, gauge blocks for measurement.	
	2.	Describe the use of sine bars and of sine plates.	
	3.	Describe the use of precision squares.	
	4.	Describe the use of a bevel and plate and universal bevel protractors.	
	5.	Demonstrate the use of angular measurement tools.	

I. Screw Thread Terminology		ad Terminology14%
	Outcome:	Describe screw thread terminology.
	1. De	escribe screw thread forms and their applications.
	2. De	escribe the parts of external and internal screw threads.
	3. De	escribe terminology associated with thread classification and fits.
	4. De	etermine screw thread tolerances from charts and tables.
J.	Screw Threa	ad Measuring and Gauging8%
	Outcome:	Demonstrate screw thread inspection methods.
	1. De	emonstrate screw thread calculations for 60° thread forms.
	2. De	emonstrate the methods used to accurately measure and gauge threads.
K.	Inspection G	Gauges6%
	Outcome:	Demonstrate the use of inspection gauges.
	1. De	escribe types of inspection gauges.
	2. De	emonstrate the use of inspection gauges.
SE	CTION TWO:	
_		
A.	Hand Grindi	ng Machines6%
	Outcome:	Demonstrate the use of offhand grinding.
	1. De	escribe the safety precautions when using offhand grinders.
	2. De	escribe types of off-hand grinding machines.
	3. De	escribe grinding wheels and their uses.
	4. De	escribe the installation, trueing and dressing of grinding wheels.
	5. De	emonstrate maintenance and operation of offhand grinders.
В.	Power Saws	2%
	Outcome:	Demonstrate the operation of power saws.
	1. De	escribe the safety precautions when using power saws.
	2. De	escribe the types, design features, and applications of power saws.
	3. De	escribe the selection of saw blades and cut-off wheels.
	4. De	emonstrate the use of power saws.
C.	Speeds, Fee	eds and Cutting Tools6%
	Outcome:	Describe the cutting conditions for turning operations.
	1. De	escribe the composition and characteristics of cutting tool materials.
	2. De	escribe shapes, angles and clearances used when grinding a cutting tool.
	3. Ca	alculate turning speeds and feeds for cutting tool and workpiece materials.
	4. De	escribe how variables such as machinability, rigidity and depth of cut affect speeds and feeds.
	5. Se	elect carbide insert shapes for turning applications.

- 12 -

	6.	Dem	ionstrate the angles and clearances used when grinding a cutting tool.	
	7.	Dem	onstrate the application of feed, speed, and depth of cut for turning operations.	
	8.	Dem	onstrate the cutting conditions for threading.	
D.	Drilling I	Machir	nes	11%
	Outcome:		Demonstrate the use of drilling machines.	
	1.	Desc	cribe the safety precautions when using drilling machines.	
	2.	Desc	cribe the types, parts attachments and operation of drilling machines.	
	3.	Desc	cribe tool and work holding devices.	
	4.	Desc	cribe parts of a twist drill and the types of twist drill materials.	
	5.	Desc	cribe special types of drills and reamers.	
	6.	Desc	cribe metric, fractional, letter and number drill sizes and methods of measuring drill sizes	
	7.	Dem	onstrate the procedures for grinding a drill bit.	
	8.	Dem	onstrate the techniques used to correct drilling issues.	
	9.	Calc	ulate the correct speeds and feeds for drill press operations.	
	10.	Dem	onstrate drilling operations using drilling machines and attachments.	
E.	Lathes			4%
	Outco		Describe the sizing, parts, accessories and attachments of lathes.	
	1.		cribe the safety precautions when using lathes.	
	2.		cribe the types, size and rated capacity of lathes.	
	3.		cribe major parts of a lathe and their functions.	
	4.		cribe work holding devices used on the lathe.	
	5.		cribe tool posts and cutting tool holders.	
F.	I athe Δt		nents and Accessories	7%
•	Outcome:		Demonstrate the use of lathe attachments and accessories during lathe operati	
	1.		cribe the set-up and application of attachments and accessories used on the lathes.	ons.
	2.			
	2. 3.	, , ,		
G.	Lathe Op	peratio	ons	42%
	Outco	me:	Demonstrate lathe set-up and operation.	
	1.	Set-ı	up the cutting tool to perform parallel turning and boring operations.	
	2.	Oper	rate a lathe to turn to a shoulder.	
	3.	Dem	onstrate center drilling, drilling and reaming operations.	
	4.	Dem	onstrate the set-up and cutting of a taper on a lathe.	
	5.	Dem	onstrate knurling, grooving, parting-off, forming and profiling, on a lathe.	
	6.	Dem	onstrate the use of taps, dies, and single point tools to cut a thread.	
	7.	Dem	onstrate set-ups for different operations on a lathe.	

- 13 -

H. Machine Lubrication and Cutting Fluids		
	Outcome	e: Demonstrate the application of lubricants.
	1. I	Describe the health hazards associated with cutting fluids.
	2. I	Describe the characteristics and functions of cutting fluids.
	3.	Describe methods used to apply cutting fluids.
	4. I	Describe lubrication schedules from manufacturer's specifications.
I.	Introduction	on and Application of Computer Numerical Control (CNC) Turning Machines1%
	Outcome	e: Describe basic concepts and applications of CNC machines.
	1. I	Describe safety practices when using CNC machines.
	2. I	Describe basic operational codes used in CNC programming and machining.
	3.	Describe basic types and applications for horizontal and vertical CNC turning centers.
	4.	Describe the advantages and disadvantages of CNC machines.
J.	Machine C	oordinate Systems for CNC Turning Machines1%
	Outcome	e: Describe the purpose of co-ordinate and reference points used for CNC lathe programs.
	1. I	Describe coordinate points of a workpiece using absolute and incremental values.
	2.	Describe the CNC lathe axis system.
	3.	Describe the purpose for reference points used on CNC turning centers.
K.	Parts and	Norkholding Accessories for CNC Turning Machines1%
	Outcome	e: Describe the basic parts and workholding accessories for CNC turning centers.
	1. [Describe the parts, functions and features of CNC turning centers.
	2.	Describe chucks and collets used on CNC turning centers.
	3.	Describe the safety practices when using CNC workholding accessories.
	4. I	Demonstrate use of chucks and collets on CNC turning centers.
L.	Set-up and	Operation for CNC Turning Machines
	Outcome	e: Demonstrate the set-up and operation for turning centers.
	1. [Describe the purpose of the major components and features of a typical CNC operator panel.
	2. [Describe methods of inputting, sorting and verifying CNC programs.
	3. I	Describe the process and procedure for tooling set-up.
	4.	Describe the purpose and use of tool offsets.
	5. [Demonstrate tool set-up.
	6. I	Demonstrate tool offset procedures.
		Demonstrate overriding cutting conditions on turning centers. Execute a CNC turning program.

- 14 -

SECTION THREE: TRADE MATH 14%

A.	. Working with Numbers1			
	Outcom	e: Perform mathematical operations with whole numbers.		
	1.	Read whole numbers by using place values and perform rounding operations.		
	2.	Perform addition and subtractions with whole numbers.		
	3.	Perform multiplication and divisions with whole numbers.		
	4.	dentify and perform operations with signed numbers.		
В.	Fractions	and Decimals and Percentages1	3%	
	Outcom	e: Solve problems involving fractions and decimals.		
	1.	dentify key terms and concepts used when working with fractions.		
	2.	Convert fractions mixed numbers and vice versa.		
	3.	Identify common denominators.		
	4.	Perform basic mathematical operations using fractions.		
	5.	Solve problems using decimal numbers, fractions and mixed numbers.		
	6.	Round whole numbers and decimals to specified place values.		
	7.	Describe the relationship between decimal numbers, fractions and percentages.		
	8.	Convert decimal numbers, fractions and percentages.		
C.	Algebra		9%	
	Outcom	e: Perform mathematical operations using algebra.		
	1.	Describe algebraic functions.		
	2.	Demonstrate the order of algebraic operations.		
	3.	Demonstrate the ability to manipulate equations.		
	4.	Solve problems using algebraic formulas.		
D.	Measurem	ent and Conversions1	2%	
	Outcom	e: Solve problems involving measurement and conversion.		
	1.	Describe the basic units for length, mass, area, volume and temperature in both the imperial ar metric (SI) systems.	nd	
	2.	Solve problems using the basic units from both imperial and metric systems.		
	3.	Convert from imperial to metric and metric to imperial measurements.		
E.	Ratio and	Proportion	9%	
	Outcom	e: Solve problems using ratio and proportion.		
	1.	Describe two quantities in the form of a ratio.		
	2.	Describe two ratios in the form of a proportion.		
	3.	Solve problems using ratio and proportion.		
F.	Taper Sys	tems	9%	
	Outcom	e: Apply taper systems to machining operations.		
	1.	State four applications of tapers.		

- 15 -

	2.	Identify the individual parts of a taper.	
	3.	Describe methods used to measure or gauge an external or internal taper for fit and accuracy.	
	4.	Identify eight taper systems and their applications.	
	5.	Perform calculations for both metric and imperial tapers.	
G.	Introduct	on to Triangles and Trigonometry2	25%
	Outcon	e: Solve problems involving triangles and elementary trigonometry.	
	1.	Describe the terms and concepts used in working with triangles.	
	2.	Describe special triangles and solve problems using related formulas.	
	3.	Describe Pythagorean Theorem and solve problems.	
	4.	Describe the terms and concepts associated with trigonometry.	
	5.	Use trigonometric formulae to determine missing triangular data.	
SE	CTION FOL	R: PRINT READING 1	13%
A.	Introduct	on to Print Reading2	25%
	Outcon	e: Sketch basic components.	
	1.	Describe the planes of an orthographic projection.	
	2.	Describe first and third angle projections, and recognize the ISO symbol for each projection.	
	3.	Describe the types of lines used on prints and their applications.	
	4.	Apply basic rules to dimensions on a component drawing.	
	5.	Sketch and dimension simple objects in orthographic projection.	
В.	Dimensio	ning Methods	.6%
	Outcon	e: Describe methods of dimensioning on a print.	
	1.	Describe the methods of applying dimensions to a print.	
	2.	Describe methods used to express the amount of taper on a component drawing.	
	3.	Interpret dimensions on prints in either metric and imperial systems or dual dimensioning.	
	4.	Calculate unspecified dimensions on a drawing.	
C.	Sections		.6%
	Outcon	e: Describe the technical elements of break lines and sectional representation.	
	1.	Describe cutting plane lines, break lines and symmetry and their application.	
	2.	Describe the use of sectional views and their applications.	
D.	Isometric	Drawings	.6%
	Outcon	e: Sketch pictorial drawings.	
	1.	Describe types of pictorial views.	
	2.	Interpret isometric drawings.	

E.	Surface Texture (Finish) - Turning 1			10%
	Outcon	ne:	Describe concepts related to surface texture.	
	1.	Descri	be terms related to the production and measurement of surface textures.	
	2.	Descri	be surface texture symbols used to indicate surface finish values.	
	3.	Demoi	nstrate machining or finishing process to produce a given surface texture.	
F.	Introduct	ion to (Geometric Dimensioning and Tolerancing1	10%
	Outcon	ne:	Interpret geometric dimensioning and tolerancing.	
	1.	Descri	be the terminology and purpose used in geometric dimensioning and tolerancing.	
	2.	Descri	be basic symbols used in geometric dimensioning and tolerancing.	
	3.	Verify	geometric dimensioning and tolerancing on parts.	
G.	Introduct	ion to L	Limits and Fits	.6%
	Outcome:		Describe limits and fits used in machining.	
	1.	Descri	be the terminology and purpose of limits and fits.	
	2. Inte		et limits and fits on prints.	
	3.	Calcul	ate allowances on mating parts.	
Н.	Introduct	ion to (Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)	25%
	Outcon	ne:	Describe the basics of CAD and CAM for turning.	
	1.	Descri	be the terminology and processes associated with CAD and CAM.	
	2.	Genera	ate geometry for basic turning processes.	
	3.	Apply	and verify tool paths for basic turning geometry.	
	4.	Post p	rocess the tool path for a basic turning program.	
I.	Fasteners and I		ocking Devices	.6%
	Outcon	ne:	Describe the uses for threaded and non-threaded fasteners.	
	1.	Descri	be threaded fasteners and their applications.	
	2.	Descri	be non-threaded fasteners and their applications.	

SECOND PERIOD TECHNICAL TRAINING MACHINIST TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS PROGRAM THE APPRENTICE WILL BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SE	CTION ONE:	METALLURGY AND HEAT TREATMENT METALLURGY AND HEAT TREATMENT	. 8%
A.	Ferrous Mo	etals	33%
	Outcome	e: Select the type of ferrous metals for an application.	
	1. [Describe the physical and mechanical properties of ferrous metals.	
	2. I	Describe alloying as a factor that changes physical and mechanical properties.	
	3. I	Describe heat-treating processes and the terminology associated with them.	
	4.	Describe the characteristics of ferrous metals for machining operations.	
	5.	Demonstrate the use of the classification system to identify metals.	
В.	Non-Ferro	us Metal	33%
	Outcome	e: Select the type of non-ferrous metals for an application.	
	1. [Describe the physical and mechanical properties of non-ferrous metals.	
	2. [Describe the applications and mechanical properties of alloys.	
	3. I	Describe the characteristics of non-ferrous metals and alloys for machining operations.	
	4. [Demonstrate the use of the classification system to identify metals.	
C.	Metal Spec	sifications and Testing	34%
	Outcome	e: Describe metal specifications and testing.	
	1. I	nterpret charts and tables to select a metal for an application.	
	2. [Describe methods of destructive testing of metals.	
	3. I	Describe methods of non-destructive testing of metals.	
	4. [Describe aspects of material test reports (MTR).	
SE	CTION TWO	:TOOLING	. 7%
A.	Tool and V	Vork Holding Devices	13%
	Outcome	e: Select the proper tool and work holding device for a milling operation.	
	1. [Describe tool holding devices and their applications for the milling machine.	
	2.	Describe work holding devices and their applications for the milling machine.	
В.	Milling Cut	ters	25%
	Outcome	e: Select a cutter for a milling application.	
	1. [Describe the types of materials used in the construction of milling cutters, their applications an limitations.	d

	2.	Desc	cribe the types of cutters used for horizontal milling operations.	
	3.	Desc	cribe the types of cutters used for vertical milling machine operations.	
	4.	Desc	cribe the care and handling of milling cutters.	
C.	Cutting	Tool M	laterials	25%
	Outco	me:	Describe chip formation, characteristics of cutting tool materials, methods of manufacture and applications.	
	1.	Desc	cribe the mechanics of chip formation.	
	2.	Desc	cribe cutting tool materials and their manufacture.	
	3.	Desc	cribe the application of different cutting tool materials.	
D.	Inserts a	and To	ol Holders	37%
	Outco	me:	Describe inserts and tool holders.	
	1.		cribe cutting tool geometry and its purpose.	
	2.		ct carbide inserts and tool holders from charts.	
	3.	Desc	cribe carbide tool failure and troubleshooting.	
	4.		ionstrate the replacement of inserts and tool holder hardware.	
SE	CHON IF	IREE: .	MACHINE TOOLS	64%
A.	Milling I	Machin	es	. 3%
	Outco	me:	Describe the types, size, parts, accessories and attachments of milling machines	ş.
	1.	Desc	cribe the safety precautions when using milling machines.	
	2.	Desc	cribe type, size, and rated capacity of milling machines.	
	3.	Desc	cribe the parts of milling machines and their functions.	
	4.	Desc	cribe milling accessories and their applications.	
В.	Milling (Operati	ions:	38%
	Outco	me:	Demonstrate the set-up and operation of a milling machine.	
	1.	Desc	cribe conventional and climb milling.	
	2.	Desc	cribe plain milling and face milling.	
	3.	Desc	cribe the set-up for cutting slots and keyseats.	
	4.	Desc	cribe the set-up for using a slitting saw.	
	5.	Desc	cribe the set-up for drilling and boring on a milling machine.	
	6.	Desc	cribe the set-up for straddle, gang and form milling.	
	7.	Desc	cribe the set-up for milling T-slots and dovetails.	
	8.	Dem	onstrate the set-up of tool holding devices for milling machines.	
	9.	Dem	onstrate the set-up and operations on milling machines.	
	10.	Calc	ulate the cutting speed, feed and depth of cut for cutting tool and workpiece materials.	
	11	Sele	ct an insert for milling applications	

C.	Dividing Head and Indexing		
	Outcome:	Describe methods of indexing using a dividing head.	
	1. De	escribe the applications of a dividing head, and each individual part.	
	2. De	escribe direct, simple and angular methods of indexing.	
	3. De	escribe the use of a rotary table.	
D.	Threading	1	13%
	Outcome:	Describe the types and uses of multiple start threads, translational threads, and taper threads.	
	1. De	escribe the purpose of multiple start threads.	
	2. De	escribe the types and uses of translational threads.	
	3. De	escribe types and uses of rotary shoulder and taper threads.	
	4. De	emonstrate cutting screw thread forms with single point tools.	
E.	Program and	d Machine Co-ordinate Systems for CNC Machining Centers	. 1%
	Outcome:	Describe the purpose of co-ordinate and reference points used for CNC milling programs.	
	1. De	escribe co-ordinate points of a workpiece using absolute and incremental values.	
	2. De	escribe the purpose of the CNC machining center axis system.	
	3. De	escribe the purpose for reference points used on CNC machining centers.	
F.	Parts for CN	C Machining Centers	3%
	Outcome:	Describe basic parts for CNC machining centers.	
	1. De	escribe the parts, functions and features of CNC machining centers.	
	2. De	escribe workholding devices for CNC machining centers.	
	3. De	escribe safety practices when using CNC workholding accessories.	
G.	Programmin	g Concepts and Codes for CNC Machining Centers	.4%
	Outcome:	Describe programming concepts and codes.	
	1. De	escribe elements of a CNC milling program.	
	2. De	escribe the purpose of preparatory (G) and miscellaneous (M) codes.	
	3. De	escribe tool, feed rate, speed and related program commands.	
	4. De	escribe tool and workpiece co-ordinates, and related program codes.	
	5. Cr	reate a basic CNC milling program.	
н.	Set-up and (Operation for CNC Machining Centers	32%
	Outcome:	Demonstrate the set-up and operation for machining centers.	
	1. De	escribe the features on the operator's panel of a machining center.	
	2. De	escribe the process and procedure for tooling set-up.	
	3. De	escribe the purpose and use of tool offsets.	
	4. De	escribe cutting conditions on machining centers.	

- 20 -

	5.	Dem	onstrate tool offset procedures.	
	6.	Dem	onstrate tool set-up.	
	7.	Dem	onstrate the execution of a CNC machining program.	
l.	Process I	Plann	ing	3%
	Outcon	ne:	Describe the reasonable sequence of events necessary to complete a job.	
	1.	Desc	cribe the planning process to complete a job.	
	2.	Deve	elop a plan to complete a job.	
SE	CTION FOU	JR:	TRADE MATHEMATICS	10%
A.	Applied N	/lathe	matics	58%
	Outcon	ne:	Apply mathematics using calculations, tables and charts.	
	1.	Perfo	orm calculations on practical applications involving triangle theory and methods.	
	2.	Perfo	orm calculations on practical applications involving ratio and proportion formula.	
	3.	Using	g the Machinery's Handbook read and interpret tables, charts and graphs.	
	4.	Calc	ulate simple mechanical forces.	
В.	Applied C	Seom	etry	42%
	Outcon	ne:	Apply geometry in calculation and problem solving.	
	1.	Desc	cribe terminology and shapes associated with common geometric forms.	
	2.	Desc	cribe formulae to determine the size of common geometric forms.	
	3.	Appl	y trigonometric formulas to solve problems.	
	4.	Dete	rmine circle feature values through calculation.	
	5.	Calc	ulate thread geometry.	
SE	CTION FIVI	E:	PRINT READING	11%
A.	Interpret	and S	Sketch Prints	29%
	Outcon	ne:	Interpret and sketch prints containing advanced technical information.	
	1.	Ident	tify accumulation of tolerances.	
	2.	Apply	y dimensions to tapers on sketching exercises.	
	3.	Sket	ch and dimension technical element such as threads, boxes and countersinks.	
	4.	Sket	ch and interpret a component in orthographic projection having an auxiliary view.	
	5.	Sket	ch a pictorial drawing showing inclined surfaces, tapers and other technical elements.	
В.	Advanced	d Geo	metric Dimensioning and Tolerancing	14%
	Outcon	ne:	Interpret geometric dimensioning and tolerancing (GD&T).	
	1.	Desc	cribe terminology and symbols used in geometric dimensioning and tolerancing.	
	2.	Verif	y geometric dimensioning and tolerancing on parts.	

C.	Surface Tex	Surface Texture (Finish) – Milling79	
	Outcome:	Describe concepts related to surface texture.	
	1. De	escribe how different machining processes affect the lay.	
	2. De	emonstrate how to measure a surface texture on a workpiece.	
	3. De	emonstrate machining or finishing process to produce a given surface texture.	
D.	Application	of Limits and Fits14%	
	Outcome:	Describe interchangeability between machined parts through the application of standards of limits and fits.	
	1. D	escribe the terminology related to standards of limits and fits.	
	2. De	escribe the application of standards of limits and fits to machined parts.	
E.	Computer A	ided Design (CAD) and Computer Aided Manufacturing (CAM)29%	
	Outcome:	Describe the basics of CAD and CAM for milling.	
	1. De	escribe the terminology and processes associated with CAD and CAM.	
	2. C	reate geometry for a basic milling process.	
	3. A	oply and verify tool paths for basic milling geometry.	
	4. Po	ost process the tool path for a basic milling program.	
F.	Assembly a	nd Sub-Assembly Drawings7%	
	Outcome:	Define the purpose of assembly drawings.	
	1. In	terpret part identification methods and bill of material on assembly drawings.	
	2 In	ternret information found on assembly drawings and sub-assembly drawings	

THIRD PERIOD TECHNICAL TRAINING MACHINIST TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS PROGRAM THE APPRENTICE WILL BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SE			COMPUTER NUMERICAL CONTROL MACHINES (CNC)
Α.	Codes ar	nd Forn	nats
	Outcor	ne:	Describe CNC concepts, programming codes and applications for turning centers.
	1.	Descr	ibe CNC concepts and terminology.
	2.	Descr	ibe the components of typical program formats.
	3.	Descr	ibe the block-skip function.
	4.	Set up	and operate a CNC turning center using G, M, S, T and F codes.
В.	Linear an	nd Circ	ular Interpolation4%
	Outcor	ne:	Program and apply linear and circular tool path motions for workpieces.
	1.		ibe the programming elements of linear tool path motions (linear interpolation) for turning ations.
	2.	Descr	ibe the programming elements of circular interpolation for turning operations.
	3.	Demo	nstrate the use of arc modifiers for circular interpolation.
	4.	Create	e a CNC lathe program including linear and circular tool path motions.
C.	Canned C	Cycles	4%
	Outcor	ne:	Create a CNC program using canned cycles for facing, turning and boring operations.
	1.	Descr	ibe the application of canned cycles for turning, facing and boring.
	2.	Demo	nstrate the use of canned cycles for square and tapered facing operations.
	3.	Demo	nstrate the use of canned cycles for cylindrical and tapered turning operations.
	4.	Demo	nstrate the use of canned cycles for cylindrical and tapered boring operations.
D.	Multiple I	Repetit	ive Cycles9%
	Outcor	ne:	Demonstrate repetitive machining cycles for turning, boring, facing, radial and face grooving, and drilling operations.
	1.	Descr	ibe the application of multiple repetitive machining cycles.
	2.	Demo	nstrate the use of turning and boring repetitive cycles.
	3.	Demo	nstrate the use of facing repetitive cycles.
	4.	Demo	nstrate the use of pattern repeating repetitive cycles for pre-shaped forgings and castings.
	5.	Demo	nstrate the use of repetitive cycles for radial grooving operations.
	6.	Demo	nstrate the use of repetitive cycles for face grooving operations.
	7.	Demo	nstrate the use of repetitive cycles for drilling operations.

E. Tool Nose Radius Compensation (TNRC)		dius Compensation (TNRC)	3%
	Outcome:	Demonstrate the use of TNRC for CNC turning operations.	
	1. Des	cribe the purpose of TNRC for turning operations.	
	2. Des	cribe vector direction for TNRC.	
	3. Dem	nonstrate G40, G41 and G42 codes used in TNRC for turning operations.	
F.	CNC Threadin	g	6%
	Outcome:	Perform the calculations required for programming threading cycles.	
	1. Des	cribe the terminology associated with threading cycles.	
	2. Desc	cribe tool infeed and retraction methods for threading.	
	3. Des	cribe applications for acceleration, deceleration and offset distances.	
	4. Des	cribe the cutting conditions for threading.	
	5. Dete	ermine the infeed, accumulative infeed and starting positions for RH and LH threading.	
G.	Programming	CNC Threads	6%
	Outcome:	Develop CNC threading programs.	
	1. Sele	ct inserts and tooling for threading operations.	
	2. Dem	nonstrate canned and repetitive cycles for cylindrical threading operations.	
	3. Dem	nonstrate threading cycles for tapered threading operations.	
	4. Dem	nonstrate programming for multiple start threads.	
	5. Dem	nonstrate programming for tapping operations.	
	6. Iden	tify common threading problems, causes and solutions.	
н.	Tool Measure	ments	4%
	Outcome:	Describe terms, concepts and tool measuring methods used on CNC turning centers.	
	1. Des	cribe the terms and concepts used in tool measurement and offsets.	
	2. Dem	nonstrate the programming application of vector direction and radius values.	
	3. Dem	nonstrate tool measurement using a master reference tool and workshift.	
	4. Dem	nonstrate automatic tool measurements using a qualified tool setter and workshift.	
I.	Machine Oper	ations	51%
	Outcome:	Demonstrate control features and functions for machine set-up and operations) <u>.</u>
	1. Des	cribe the control features and functions for turning operations.	
	2. Dem	nonstrate program input, storage, editing and verification.	
	3. Dem	nonstrate tool set-up on a CNC turning center.	
	4. Set	up and execute a program on a CNC turning center.	
J.	Multi Axis Tur	ning	7%
	Outcome:	Demonstrate live tooling set-up and operations.	
	1. Des	cribe the purpose and use of C and Y axis.	

- 24 -

	4.	Dem	onstrate the set-up and operation of live tooling.	
SE	CTION TW	O:	MACHINE TOOLS	38%
A.	Gearing .			6%
	Outcoi	ne:	Describe basic gear operation and applications.	
	1.	Desc	cribe types of gears and their applications.	
	2.	Desc	cribe the purpose of the five standard gear tooth pressure angles.	
	3.	Calc	ulate the speed and gear ratios for simple and compound gears.	
В.	Spur Gea	ars		7%
	Outcor	ne:	Describe indexing and spur gears.	
	1.	Desc	cribe the terminology associated with each part of a spur gear.	
	2.	Spur	gear calculations.	
	3.	Dem	onstrate set-up and cutting of a spur gear.	
C.	Bevel Ge	ars		5%
	Outcoi	ne:	Describe the elements and applications of bevel gears.	
	1.	Desc	cribe the types and applications of bevel gears.	
	2.		cribe the main elements of bevel gears.	
D.	Helical G	ears		4%
	Outcoi	ne:	Describe the elements and applications of helical gears.	
	1.	Ident	tify the main elements of helical gears.	
	2.	Ident	tify applications for helical gears, as well as their advantages and disadvantages.	
E.	Gear Mai	nufact	ruring Methods	13%
	Outcoi	ne:	Describe the process of manufacturing precision gear systems.	
	1.	Calc	ulate the required dimensions when cutting a spur gear and rack.	
	2.	Desc	cribe methods of manufacturing and finishing gears.	
	3.	Desc	cribe the inspection methods used to measure the design specifications on gears.	
	4.	Dem	onstrate the set-up for hobbing a gear on a milling machine.	
F.	Multi Sta	rt and	Worm Threading	13%
	Outcor	ne:	Perform calculations and operations for multi start and worm threading.	
	1.	Desc	cribe the basic elements of plain, single enveloping, and double enveloping worm threa	ads.
	2.	Desc	cribe the methods and materials used in the manufacture of worm threads.	
	3.	Calc	ulate the size of the basic elements.	
	4.	Desc	cribe the characteristics and applications of multiple start threads.	
	5.	Dem	onstrate the set-up and perform multi start thread cutting on the lathe.	

Describe the purpose and use of multi spindle turning center.

Describe the purpose and use of multi turret turning centers.

2.

3.

G.	G. Abrasives		
	Outcome:	Describe abrasives and their uses.	
	1. De	escribe types and uses of abrasives.	
	2. De	escribe grinding wheel nomenclature and types.	
	3. Se	elect a grinding wheel for specific applications.	
Н.	Grinding Ma	chines	27%
	Outcome:	Demonstrate grinding machines and processes.	
	1. De	escribe the types, parts, holding devices and operation of surface and cylindrical grinders.	
	2. De	escribe the purpose of truing and dressing grinding wheels.	
	3. De	emonstrate the mounting and truing of grinding wheels.	
	4. De	emonstrate balancing and dressing operations on grinding wheels.	
	5. De	emonstrate grinding operations on grinders.	
I.	Machine Bro	aching	2%
	Outcome:	Demonstrate broaches and broaching machines.	
	1. De	escribe the design and application of broaches.	
	2. Se	t-up and perform broaching operations.	
J.	Splines		11%
	Outcome:	Describe methods for producing splines.	
	1. De	escribe the types of splines and their applications.	
	2. De	escribe the methods and fits of manufacturing splines.	
	3. De	emonstrate manufacturing of straight sided splines.	
K.	Fixtures		5%
	Outcome:	Describe the design and application of fixtures.	
	1. De	escribe the design principles and applications of fixtures.	
	2. De	escribe locating and clamping devices of fixtures.	
	3. De	emonstrate the use and application of fixtures.	
SE	CTION THREE	:TRADE MATHEMATICS	10%
Α.	Applied Math	nematics	8%
	Outcome:	Perform calculations.	
		lve problems by interpreting and using data from tables, charts and graphs found in the	
		achinery's Handbook.	
В.	Trigonometr	y Applications	42%
	Outcome:	Perform calculations using trigonometry.	
	1. So	lve problems for parts of different triangles.	
	2. Us	e trigonometry to solve machining problems.	

- 26 -

C. Advanced Limits and Fits		Limits and Fits50%
	Outcom	e: Design a GO/NO GO inspection gauge.
	1.	Calculate fits and dimensions for designing gauges.
	2.	Describe implications of surface finishes and GD&T.
	3.	Design a GO/NO GO inspection gauge.
SE	CTION FOU	R: COMPUTER AIDED DESIGN AND COMPUTER AIDED MANUFACTURING13%
A.	Computer	Aided Design (CAD)44%
	Outcom	e: Demonstrate a CAD drawing for turning.
	1.	Create the geometry for grooving, threading and profiling applications.
	2.	Edit imported CAD drawings.
В.	Computer	Aided Manufacturing (CAM)44%
	Outcom	e: Demonstrate tool path generation for turning, including live tooling.
	1.	Apply and verify tool paths for advanced turning processes.
	2.	Create a tool library.
	3.	Demonstrate use of live tooling / C-axis for CAM processes.
C.	Co-ordinat	e Measuring Machine Technology (CMM)6%
	Outcom	e: Describe Co-ordinate Measuring Machine Technology (CMM)
	1.	Describe Co-ordinate Measuring Machine Technology.
	2.	Describe the function, parts and use of CMM's.
	3.	Demonstrate how a CMM is used to accurately measure components.
D.	Advanced	Process Planning – Estimating6%
	Outcom	e: Use a machine shop estimating process.
	1.	Describe the terms and concepts related to estimating.
	2.	Determine the cost of materials for a job.
	3.	Determine the cost of labour for a job.
	4.	Perform a final cost estimate for a job.

FOURTH PERIOD TECHNICAL TRAINING MACHINIST TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS PROGRAM THE APPRENTICE WILL BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SE	CTION O	NE:	COMPUTER NUMERICAL CONTROL MACHINING CENTERS	53%
A.	Codes	and For	mats	6%
	Outco	ome:	Describe CNC concepts, programming codes and applications for machining centers.	
	1.	Desc	ribe CNC concepts and terminology.	
	2.	Desc	ribe the components of typical program formats.	
	3.	Set u	ip and operate a CNC machining center using G, M, S, T and F codes.	
	4.	Dem	onstrate the use of workshift and tool length offset program codes.	
В.	Advanc	ed Line	ear and Circular Interpolation	5%
	Outco	ome:	Demonstrate linear and circular interpolation for profile milling operations.	
	1.	Desc	cribe the elements of linear tool path motions (linear interpolation) for milling operations.	
	2.	Desc	ribe elements of circular interpolation for milling operations.	
	3.	Write	e a CNC program including linear and circular tool path motions for machining centers.	
	4.	Dem	onstrate the use of arc modifiers for circulation interpolation.	
C.	Canned Cycles			
	Outco	ome:	Demonstrate canned cycles used for drilling, boring and tapping operations performed on CNC machining centers.	
	1.	Desc	ribe program variables used in canned cycles.	
	2.	Desc	ribe the use of drilling, tapping and boring canned cycles.	
D.	Program Applications for Canned Cycles1			11%
	Outco	ome:	Demonstrate canned cycle programs for hole making operations for CNC mach centers.	ining
	1.	Calcu	ulate co-ordinate points for typical hole patterns.	
	2.	Calcu	ulate depth of holes for drilling operations.	
	3.	Dem	onstrate canned cycles for drilling type operations including tapping and boring.	
	4.	Dem	onstrate canned cycles with repeat (L) function for linear and grid hole patterns.	
	5.	Dem	onstrate canned cycles using polar co-ordinates.	
E.	Cutter (Compen	nsation	3%
	Outco	ome:	Demonstrate cutter compensation for machining workpiece profiles on CNC machining centers.	
	1.	Desc	ribe the purpose of cutter compensation for milling operations.	

	2. D	escribe program codes, machine settings and guidelines for cutter compensation.	
	3. D	Demonstrate G40, G41 and G42 codes used in cutter compensation for milling operations.	
F.	Programmi	ng Concepts and Applications	16%
	Outcome	: Describe advanced programming concepts and applications.	
	1. D	Describe concepts for macro programing.	
	2. D	escribe mirror image for machining applications.	
	3. D	escribe co-ordinate rotation for machining applications.	
	4. D	emonstrate workpiece coordinate system shift programming techniques.	
	5. D	emonstrate the use of subprograms for appropriate machining applications.	
	6. D	emonstrate helical milling for hole making and thread milling operations.	
G.	Set-Up and	Operations	40%
	Outcome	: Demonstrate machining operations on CNC machining centers.	
	1. D	Demonstrate loading of tools, input tool numbers and tool geometry.	
	2. D	emonstrate the sequence of operations for tool changers.	
	3. D	emonstrate tool length and tool length offset measurements.	
	4. D	emonstrate workpiece co-ordinate or workshift measurements.	
	5. E	xecute a program on a computer numerically controlled machining center.	
Н.	Multi Axis N	Milling	14%
	Outcome	: Set-up and operate a fourth axis.	
	1. D	escribe fourth axis machining.	
	2. D	escribe multi axis machining.	
	3. S	et up and operate fourth axis milling.	
SE	CTION TWO:	MACHINE TOOLS	24%
A.	Boring Mills	S	28%
	Outcome		
		Describe safety, types, parts, and controls of horizontal and vertical boring mills.	
		Describe accessories, operations, speeds and feeds of boring mills.	
	3. D	Demonstrate set-up and perform boring operations on a boring mill.	
В.	Bearings ar	nd Seals	17%
	Outcome		
		Describe the types and applications of plain bearings.	
		Describe the types and applications of roller bearings.	
		Describe bearing installation and fits.	
		Describe types and applications of seals.	
		Demonstrate machining of bearing journals.	

- 29 -

C.	C. Advanced Machining			
	Outcome	Demonstrate critical set-up of rotating components.		
	1. A	pply geometric dimensioning and tolerancing on machining applications.		
	2. U	se work holding devices in machining operations.		
	3. D	emonstrate repair procedures for parts and components.		
	4. A	pply geometric dimensioning and tolerancing on parts and components for a gearbox.		
	5. D	emonstrate procedures for critical alignment of components.		
D.	Specialized	Manufacturing	21%	
	Outcome	Describe non-traditional process used in manufacturing.		
	1. D	escribe the processes and applications of electrochemical machining to remove metal.		
	2. D	escribe the use of thermal processes for machining metal.		
	3. D	escribe the process and applications of powder metallurgy for the mass production of parts.		
	4. D	escribe methods of deep-hole drilling and their applications.		
	5. D	iscuss new technological advancements that are relevant to manufacturing processes.		
	6. D	escribe safety practices when using Electrical Discharge Machining (EDM).		
	7. D	escribe the function, parts and accessories of EDM's.		
	8. D	escribe portable machining.		
SE	CTION THREI	E: COMPUTER AIDED DESIGN AND MANUFACTURING	13%	
A.	Computer A	sided Design (CAD)	50%	
	Outcome:	Demonstrate CAD drawing for milling.		
	1. C	reate the geometry for advanced machining processes.		
	2. E	dit imported CAD drawings.		
В.	Computer A	sided Manufacturing (CAM)	50%	
	Outcome:	Demonstrate tool path generation for milling.		
	1. A	pply and verify the tool path for advanced milling processes.		
	2. D	emonstrate the use of 4 th axis in CAM processes.		
SE	CTION FOUR	: METROLOGY, COACHING AND GOVERNANCE	10%	
A.	Measuring,	Gauges and Comparators	21%	
	Outcome	Describe inspection gauges and comparators for indirect measurement.		
	1. D	escribe inspection gauges and comparators.		
	2. D	escribe methods of comparison measurement.		
	3. D	emonstrate how to use precision measuring systems to measure flatness and surface finish.		

FOURTH PERIOD

В.	Calibration of Measuring Tools179		
	Outcome:	Describe methods of checking and calibrating precision measuring tools.	
		scribe a system for determining the accuracy of micrometers and dial indicators using gauge ocks.	
	2. Des	scribe methods of determining whether a gauge is within tolerances.	
C.	Co-ordinate N	Measuring Machine (CMM)50%	
	Outcome:	Demonstrate Co-ordinate Measuring Machine Technology (CMM)	
	1. Des	scribe advanced functions of a CMM.	
	2. Der	monstrate how a CMM is used to accurately measure milled components.	
D.	Workplace Co	paching Skills	
	Outcome:	Use coaching skills when training an apprentice.	
	1. Des	scribe the process for coaching an apprentice.	
E.	Interprovincia	al Standards Red Seal Program4%	
	Outcome:	Use Red Seal products to challenge an Interprovincial examination.	
	1. Ide	ntify Red Seal products used to develop Interprovincial examinations.	
	2 Use	e Red Seal products to prepare for an Interprovincial examination	

Apprenticeship and Industry Training

Alberta Trades. World Ready.